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Universal Communication—Part I:
Modulo Additive Channels
Yuval Lomnitz, Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract—Which communication rates can be attained over a
channel whose output is an unknown (possibly stochastic) function
of the input that may vary arbitrarily in time with no a priori
model? Following the spirit of the finite-state compressibility of
a sequence, defined by Lempel and Ziv, a “capacity” is defined
for such a channel as the highest rate achievable by a designer
knowing the particular relation that indeed exists between the
input and output for all times, yet is constrained to use a fixed
finite-length block communication scheme without feedback, i.e.,
use the same encoder and decoder over each block. In the case
of the modulo additive channel, where the output sequence is
obtained by modulo addition of an unknown individual sequence
to the input sequence, this capacity is upper bounded by a function
of the finite state compressibility of the noise sequence. A universal
communication scheme with feedback that attains this capacity
universally, without prior knowledge of the noise sequence, is
presented.

Index Terms—Arbitrarily varying channels (AVCs), feedback
communication, individual sequences, rateless coding, universal
communication, unknown channels.

I. INTRODUCTION

C ONSIDER the problem of communicating over a channel,
where the (possibly stochastic) relation between the input

and output is unknown to the transmitter and the receiver and
may be, in general, nonstationary. In particular, no assumption
is made that the channel behavior up to a certain point in time
indicates anything about its expected behavior from this time on.
The key characteristic of such a channel is that the channel law
cannot be learned, i.e., it is impossible, using an asymptotically
short measurement period, to obtain the channel probability law
and use it during the rest of the transmission.
Clearly, communication over such an arbitrary channel is

challenging. Furthermore, even the question what the limits of
such communication are, is not well posed. To emphasize the
fact that the relation between input and output is a function of
the entire sequences, or vectors, this channel shall be termed
a vector channel. A simple example of such a channel, which
was discussed by Shayevitz and Feder [1] is the modulo-ad-
ditive channel with an individual noise sequence, defined by
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the relation where are -length
vectors, denoting the input, output, and the noise sequence,
is a finite alphabet, the “+” denotes modulo addition over ,
and the sequence is arbitrary and unknown. The main focus
in this paper is on this channel model. When the alphabet is

this channel is referred to as the binary additive
channel.
In the general vector channel, when the conditional proba-

bility of the output vector given the input vector is known, the
classical Shannon capacity, i.e., the maximum communication
rate achievable with an arbitrarily small error probability, is
well defined. The Shannon capacity of the general causal vector
channel was given by Han and Verdú [2]. When the channel is
unknown, the same communication rate is in many cases not
attainable. In this case, the compound channel or arbitrarily
varying channel (AVC) frameworks [3] may be used. In these
frameworks, the capacity is defined as the maximum rate of
transmission which guarantees robust communication over all
possible channels. However, these frameworks do not consider
the ability to use feedback to adjust the communication param-
eters, and are therefore worst case in nature. On the other hand,
Shayevitz and Feder [1] have shown that for the modulo-addi-
tive channel with an individual noise sequence, by using feed-
back to adapt the transmission rate to the actual channel occur-
rence, these worst case assumptions may be alleviated. These
results were extended by the authors and others [4], [5].
Since the channel is unknown, the target is to find a uni-

versal communication system that operates without knowing
the channel. While there are known universal source encoders
[6] and universal predictors [7], in the communication problem,
the term “universality” had been used mainly with respect to
decoders, competing against the maximum likelihood decoder
in a compound channel [3], [8], and there is currently no no-
tion of universality with respect to the complete communication
system. This is since in the traditional AVC model, feedback is
not considered and therefore the encoder is assumed to be fixed.
On the other hand, in existing works that consider adaptation of
the communication rate using feedback [1], [4], [5], the com-
munication rates achieved do not have a strong justification. For
example, these works define the rate using zero-order empirical
distributions, and higher rates could be attained by considering
empirical distributions with memory.
Let us denote by a conditional distribution of the

channel output given the input defining a vector channel, where
is an index belonging to a possibly infinite index set . Given
a class of vector channels , the objective is to assign
a rate to each channel, such that on one hand has an op-
erational meaning, for example, the maximum rate achievable
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under certain constraints, and on the other hand, it would be
possible to construct a universal system using feedback, that
without knowledge of , attains a rate of at least for all .
The difference from the AVC or compound channel models is
that the communication rate depends on . As shall be seen, the
maximum rate achievable by block encoders and decoders that
know is a reasonable target that can be used as a definition
for . This target rate is universally achievable for the class
of modulo-additive channels, as shown below. More generally,
this target is universally achievable for arbitrary channels with
fading memory, as shown in a follow up paper [9], using more
elaborate tools. On the other hand, this rate is not universally
achievable in general.
The main contributions of this paper are as follows. For

the general problem of communication over any unknown
vector channel, the first definition of competitive universality
is given. In particular, the “iterated finite block capacity,”

is defined. A significant part of the paper is
devoted to exploration of the problem boundaries: For which
channel families can the IFB capacity be attained? Which other
interesting definitions of the reference class can be given?
The other contributions are specific to the modulo-additive
channel with an individual noise sequence. A bound on the IFB
capacity is given, a universal system that attains the target rate
without knowing the channel is presented, and the redundancy
in approaching this rate is analyzed. The converse part of the
redundancy analysis holds also for larger families of channels
that include the modulo-additive channel as a special case.
The paper is organized as follows: in Section II, the motiva-

tions for the definition of are explained. Section III is a
high-level overview of the results regarding the modulo-addi-
tive channel, and the main ideas behind the proofs. Section IV
includes the detailed definitions with some discussion.
Section V focuses on the modulo additive channel and includes
the upper bound on and the universal system achieving
it. The redundancy, i.e., the convergence rate, in achieving the
IFB capacity is explored in Section VI. Section VII is devoted
to discussion and comments and suggests some extensions and
alternative definitions.

II. MOTIVATION

Let us now discuss the motivations for the definitions of a
target rate which is universally achievable. The inherent diffi-
culty of defining the maximal communication rates over arbi-
trary vector channels can be appreciated by considering even the
simple example of a binary additive channel with an
individual noise sequence , where “ ” denotes modulo-2 addi-
tion and all vectors are of length . For every specific individual
noise sequence , the capacity of this channel is 1 bit/use. On
the other hand, if the noise sequence is arbitrary and unknown,
the AVC capacity [3] is zero. It would initially seem that not
much can be done, when the noise sequence is unknown; how-
ever it was shown [1] that, using feedback and common ran-
domness, and by adapting the decoding rate, a communication
rate of can be achieved, where denotes
the empirical entropy of the noise sequence, i.e., the binary en-
tropy of the empirical cross-over probability. The main idea is

Fig. 1. Illustration of the decoding rule of the rate adaptive system. is
the compression length. Decoding thresholds with respect to

are depicted by horizontal lines.

that if the empirical channel can be measured and the commu-
nication rate can be adapted, then rather than making a priori
pessimistic assumptions, one can opportunistically increase the
rate when the noise sequence has a low empirical entropy.
A disturbing fact is that some arbitrariness exists in deciding

on the rates to achieve per each channel: in the binary additive
channel, given a sequence of choice, one could also design a
system that achieves the rate , by adding the se-
quence to the channel output and then applying Shayevitz and
Feder’s scheme [1]. Doing so, a rate of 1 is obtained for the se-
quence , where the original system’s rate was ,
and a rate of for the noiseless case , so one may
say that the noise sequence is “favored” over . This demon-
strates the arbitrariness in determining which communication
rates are possible. To remove this arbitrariness, a reasonable cri-
terion is sought, to decide which channels (noise sequences, in
the example) to favor over others.
This issue bears significant resemblance to issues tackled in

universal source coding (compression) and in universal predic-
tion. In universal compression, one would like to set a target
for the compression rate of an individual sequence. As in the
current problem, someone who knows the sequence can design
an encoder which compresses it to 1 bit, whereas assuming
the sequence is completely unknown and without favoring
any sequence over another, no compression can be achieved.
There are many possible fixed to variable encoders which are
uniquely decodable, and the decision between them may seem
arbitrary. One solution proposed by Lempel and Ziv [6] was
to set as a target, the compression rates that are achievable by
machines with limited capabilities, i.e., finite state machines
(FSMs). They defined the notion of finite state compressibility
for an infinite sequence, as the best compression rate that can be
achieved by any information lossless FSM operating over the
infinite sequence, and had shown that the LZ78 compression
algorithm based on incremental parsing, defined there, achieves
this compression rate universally for any sequence. This con-
cept supplies a criterion to decide which sequences to favor
over others, without assuming a probability law. A similar
notion, i.e., that of comparing against the best machine out of a
restricted class, is applied in universal prediction [7], [10].
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Fig. 2. Illustration of iterative mapping used for the definition of average error probability (see Definition 3). The same encoder and decoder are used over each
of the blocks of channel uses, and the average error probability is computed.

Following this lead, the comparison class is chosen to be the
set of fixed finite-length block encoders and decoders, which
repeatedly perform the same encoding and decoding operations
over blocks of any fixed length (see Fig. 2). This class is a rel-
atively simple one, while still yielding a reasonable criterion to
set the communication rate. The iterated finite block capacity of
an infinite vector channel is defined as the supremum of
all rates which are reliably achievable by encoders and decoders
in the comparison class. This capacity value may be smaller,
in general, than the Shannon capacity of the vector channel.
This definition has operational significance, since many prac-
tical communication systems use block encoding, and there-
fore universally attaining the means that one can design
a system which, without any prior knowledge of the channel,
is essentially at least as good as any finite block code. The uni-
versal system itself does not belong to the comparison class—it
does not operate in fixed blocks, it modifies its behavior based
on the past, and it uses feedback. Although achieving uni-
versally is possible for classes of vector channels wider than the
modulo-additive channel [9], it is not possible to attain this rate
for general unknown vector channels.
The IFB model presented here is simple and intuitive, how-

ever it has several drawbacks and alternative definitions and ex-
tensions can be proposed. These are discussed in Section VII-A.
Most notably, Misra and Weissman [11] generalized the current
results to finite-state communication systemswith feedback. For
the sake of simplicity, the paper focuses on the basic model of
reference systems using block coding.
Although the results are currently purely theoretical (see

Section VI), they supply motivation for using competitive
universality in communication.

III. OVERVIEW OF THE MAIN RESULTS

This section provides an informal review of the main results
and rough proof outlines. The purpose is to provide an under-
standing of the results without diving into mathematical detail.
The main results of this paper pertain to the modulo-additive
channel with individual noise sequence. For this channel, it is

shown in Section V that , where
is the finite state compressibility of the infinite sequence

, as defined by Lempel and Ziv [6]. Assuming that common
randomness exists and that there is a feedback link, a universal
system employing feedback exists, which asymptotically attains
this rate universally without prior knowledge of the noise se-
quence. In Section VI, upper and lower bounds on the conver-
gence rate are derived. Below, the main ideas in the proofs are
described.
Let us begin with the upper bound on . Suppose the

given reference system comprised of an encoder and a decoder,
achieves the rate over blocks of size (see Fig. 2). During
these blocks, the reference system “sees” different noise
vectors of length , namely , . Since
the system is fixed during these blocks, this is equivalent to
operating over a stochastic channel, where the noise vector is
chosen uniformly from the set of these vectors, with probability
for each. This random vector is termed the “collapsed” noise

sequence, and the channel generated from it the “collapsed”
channel (see Fig. 5). The standard converse of the channel
capacity theorem, without the assumption of a memoryless
channel, can be applied to the collapsed channel, and yields
an upper bound on , which is roughly .
The entropy is lower bounded using the finite state
compressibility of the sequence, since an FSM may achieve a
compression rate close to the entropy by standard block-to-vari-
able coding, where the code lengths are tuned to the statistics
of the collapsed noise vector. Combining these bounds yields
the result (see Theorem 1).
Next, a communication scheme is demonstrated, that asymp-

totically attains the rate , where is the
compression length of the sequence by a given sequential
source encoder, and is the overall block length. The scheme is
based on iterative application of rateless coding, sending bits
in each block. Each codeword in the codebook of words
is chosen independently and distributed uniformly over . The
transmitter sends symbols from the codeword matching the
message bits, until a termination condition occurs at the receiver
side. Then, the receiver indicates the end of the block through
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the feedback link and a new block begins. The termination con-
dition is based on giving a rank to every possible noise sequence
. This noise sequence has two parts: the part spanning pre-

vious blocks that had already been decoded is known with high
probability, as both the channel input and the channel output are
known. The part of the noise sequence from the beginning of the
current block is unknown, but is related in a one-to-one relation
to the unknown message, because the channel output is known.
Therefore, there are possible noise sequences, corre-
sponding to the possible codewords sent in the current
block. The rank of each noise sequence is the code-length, or
the number of bits in its representation by the given source en-
coder. The decoder terminates the block if for any codeword this
length is smaller than a threshold.
The proof of this scheme’s performance is roughly as follows.

Due to the random coding, most of the hypotheses, except the
true one, yield random noise sequences. These sequences are in-
compressible, and therefore the number of bits representing the
last block would be approximately times the number of
symbols in the block. It can be shown that setting the threshold
approximately below this value, guarantees a small proba-
bility of exceeding the threshold for any of the in-
correct codewords, and therefore a small probability of error.
It is convenient to define the “porosity” of the sequence up to
time as , representing the gap be-
tween the compressibility of the hypothetical noise sequence,
and the compressibility of a random sequence. The approximate
termination condition may be interpreted as decoding when the
value of increases by from the start of the current block.
Since when this occurs, the system starts a new block, there is a
correspondence between the increase in and the number of
blocks and bits that are transmitted, i.e., the termination condi-
tion can be approximately interpreted as where
is the number of blocks so far. Therefore, assuming by time
, blocks were transmitted, the number of transmitted bits is

. Assuming no errors occurred
, and dividing by the desired result is obtained. This

is depicted in Fig. 1, where the horizontal axis is the time . The
solid line presents , and the dashed line . The decoding
thresholds are depicted as horizontal lines,
while the vertical lines depict the decoding times. Decoding oc-
curs whenever crosses a threshold. A random hypothesized
sequence in the current block implies that does not increase
on average. It can be seen that the number of bits that will be
sent is approximately . In the full proof, various overheads
that were neglected above are accounted for.
To obtain the universal system attaining (see Theorem

3), the scheme above is applied with the encoding lengths
determined by the LZ78 source encoder, whose compression
ratios asymptotically approach the finite state compressibility:
asymptotically , therefore

, where all inequalities are up to
asymptotically vanishing factors.
Section VI deals with the question of the redundancy, or

how quickly the system converges to the rate attained by the
best IFB system with a given block length . Unfortunately,
it is shown that must grow at least as fast as , approxi-
mately. The upper bound on redundancy is obtained by using

a similar universal system employing a slightly more refined
design: a universal probability assignment based on a mixture
of Krichevsky–Trofimov distributions [12] is used instead of
the LZ78 encoder. The lower bound is obtained by presenting
a design of an IFB system together with a random channel,
i.e., a distribution over noise sequences, such that the mutual
information over the channel is smaller than the rate obtained
by the IFB system. This is possible because the IFB system is
designed together with the channel and can use the knowledge
of the specific noise sequence. On the other hand, the rate
obtained by any universal system with feedback is bounded
by the mutual information, and this gap comprises the lower
bound on redundancy. The upper bound and the lower bound
on the redundancy agree in terms of the asymptotical growth
rate of as function of (see Fig. 7).

IV. CHANNEL MODEL AND DEFINITIONS

This section begins the formal presentation of the results, by
presenting the channel model and the definitions of the capacity

, and discussing their implications.

A. Notation

Vectors are denoted by boldface letters. Subvectors are de-
fined by superscripts and subscripts: .
equals the empty string if . The subscript is sometimes

removed when it equals 1, i.e., .
For a vector or random variable , de-

notes the th block of length in the vector. For brevity, vectors
with similar ranges are sometimes joined together, for example,
the notation is used instead of . Exponents and
logs as well as information quantities are base 2. Random vari-
ables are distinguished from their sample values by capital let-
ters. The indicator function where is a set or a prob-
abilistic event is defined as 1 over the set (or when the event
occurs) and 0 otherwise.

denotes the binary entropy function, i.e., the entropy
of a Bernully- random variable, and denotes the finite
state compressibility [6] of , defined formally in Section V-A,
(3)–(5).

B. Channel Model

Let and be infinite sequences denoting the input and
the output respectively, where each letter is chosen from the
alphabets respectively, . Throughout
this paper, the input and output alphabets are assumed to be
finite. A channel is defined through the probabilistic
relations for

. A finite length output sequence is considered
in order to make the probability well defined. Sometimes, this
probability will be informally referred to as , and
should be understood as the sequence of these distributions for

.
Definition 1: The channel defined by is termed

causal if for all :

(1)
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Fig. 3. Rate adaptive encoder-decoder pair with feedback, over an unknown channel.

All the definitions below (including IFB capacity) pertain to
causal channels. This characterization of a causal channel is
similar to the definition used by Verdú and Han [2] (and refer-
ences therein). This definition is also limited in assuming the
channel starts from a known state (at time 0). However, this
does not limit the current setting, because an arbitrary initial
state can be modeled by considering the family of channels with
all possible initial states. Note that noncausality that consists
of bounded negative delays can always be compensated by ap-
plying a delay to the output.

C. IFB Capacity

The following definitions lead to the definition of IFB
capacity.
Definition 2 (Reference Encoder and Decoder): A finite

length encoder with block length and a rate is a mapping
from a set of messages

to a set of input sequences . A respective finite length
decoder is a mapping from the set of
output sequences to the set of messages.
Definition 3 (IFB Error Probability): The average error

probability in iterative mapping of the length encoder and
decoder to blocks over the channel is defined as
follows: messages are chosen as i.i.d. uniformly
distributed random variables .
The channel input is set to , and
the decoded message is where is the channel
output. The iterative mapping is illustrated in Fig. 2. The
average error probability is .
Definition 4 (IFB Achievability): A rate is iterated-finite-

block (IFB) achievable (resp.) over the channel , if for any
there exist such that for any there exist

an encoder and a decoder with block length and rate
for which the average error probability in iterative mapping of

to blocks is at most .
This is equivalent to stating that the of the average

error probability with respect to is at most .
Definition 5 (IFB Capacity): The IFB capacity of the channel
is the supremum of the set of IFB achievable rates, and is

denoted .

D. Competitive Universality

In the following, the properties of the adaptive system with
feedback, and IFB-universality are defined. A randomized rate-

adaptive transmitter and receiver for block length with feed-
back are defined as follows (see also formal definitions in [13,
Sec. 5]): the transmitter is presented with a message expressed
by an infinite bit sequence, and following the reception of
symbols, the decoder announces the achieved rate , and de-
codes the first bits. An error means any of these bits differs
from the bits of the original message sequence. Both encoder
and decoder have access to a random variable (the common
randomness) distributed over a chosen alphabet, and a causal
feedback link allows the transmitted symbols to depend on pre-
viously sent feedback from the receiver. The system is illus-
trated in Fig. 3.
The following definition states formally the notion of IFB-

universality for rate adaptive systems:
Definition 6 (IFB Universality): With respect to a set of chan-

nels (not necessarily finite or countable), a
rate-adaptive communication system (possibly using feedback
and common randomness) is called IFB universal if for every
channel in the family and any there is large enough
such that when the system is operated over channel uses, then
with probability , the message is correctly decoded and the
rate is at least .
Notice that the definitions above (and specifically definitions

4, 6) do not require uniform convergence with respect to the
channel, i.e., the number of channels uses or blocks for
which the requirements hold may be a function of the channel.

E. Discussion on IFB Capacity and Universality

Following are some comments regarding IFB capacity and
IFB universality. Note that the use of average error probability
over time and messages (expressed in the assumed uniform dis-
tribution) rather than maximum error probability (over time or
messages) reduces the requirements from and therefore
increases .
As noted, , where is the Shannon capacity [2].

However, for i.i.d. memoryless channels clearly .
The difference between and relates to the stability of
the channel over time, and the ability to utilize channel struc-
ture which cannot be observed in finite time. Let us give two
examples to sharpen this difference.
Example 1: Consider the binary product channel
, and let the sequence alternate between 0 and 1, in blocks

of ever growing size, but such that the overall frequency of 0
is , and the length of each block is negligible compared to the
total length of previous blocks. For example, set to 0 in
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Fig. 4. Adaptive system over the modulo-additive channel with feedback.

. For this channel while
. The reason is that for every finite length encoder/decoder,
ultimately as half the blocks will fall on bursts of
and be in error. Note that if rate adaptation would have been
allowed at the IFB decoder, this capacity would not be zero (see
Section VII-A)
Example 2: Consider a channel with ever growing delay:

suppose that is a sequence of slowly growing delays. For
example, , and the channel is , where

are binary. The capacity of this channel is , whereas
. Here, the reason for the gap is the in-ability to utilize

the channel structure with a finite block size.
Following these examples the choice of may be justified

by twomain reasons: one is its operational significance, i.e., that
universally attaining , means competing with every static
block coding system, and the other is the rejection of “patho-
logical” behaviors of the channel, as the ones mentioned in the
examples above.
Note that although , the universal system presented

here may opportunistically achieve rates above . This means
the communication rate may exceed in part of the time. Con-
sider for example the binary nonergodic channel that with prob-
ability has , and with probability the output is
independent of the input. While the capacity of this channel is

(and ), by adapting the rate, one could attain a
rate of 1 with probability .
An interesting question is whether for a general vector

channel, can be universally attained. Unfortunately,
the answer is negative, and the reason is that, because the
input sequences used by the reference encoder and by the
universal system are different, infinite memory in the channel
may cause the channel to get “stuck” in an unfortunate state.
This phenomenon is nicknamed a “password” channel, since
it is similar to a situation where a password is required at the
beginning of transmission, otherwise the channel becomes
useless. In this case, a reference system knowing the password
may succeed and a universal system, having only one attempt
to find the password, is bound to fail. More generally, given an
encoder, a channel can be structured such that it will identify
the specific encoder’s codebook, and fail if any deviation from
this codebook is observed. Here is a simple example:
Example 3 (Password Channel): Consider a family of two

binary channels. In the first channel, if then the channel
will become clean, i.e., , but if , then

it becomes blocked, i.e., . The second channel
is the same, except the roles of are reversed. Clearly, for
both channels , since the only constraint required to
avoid blocking is that the first symbol in each encoded block
is constant 0 or 1, and therefore a rate of can be obtained
with block size . On the other hand, no universal system can
guarantee any rate with a vanishing error probability, since any
choice of the first symbol will lead to blocking in one of the two
channels.
The conclusion from the above is that the concept of iter-

ated finite block capacity is not as strong as the concept of finite
state compressibility, which is truly universally attainable. This
problem relates to a fundamental difficulty in universal commu-
nication compared to universal compression: in universal com-
pression, the sequence is given and does not depend on the en-
coder’s actions, while in communication, the encoder’s actions
(the input symbols) affect the channel behavior in an unexpected
way.
One may be tempted to think that depriving the IFB class

from its blockwise operation and limiting it to i.i.d. distribu-
tions would solve the “password” problem. However, it is easy
to devise a channel that would identify the input distribution
of the reference encoder, while blocking the universal system.
See Example 5 in Appendix G. These difficulties exemplify the
complexity of the universal communication problem.

V. UNIVERSAL COMMUNICATION OVER THE
MODULO-ADDITIVE CHANNEL

This section and the next, focus on the modulo-additive
channel with an individual noise sequence (Fig. 4). It is
shown that the IFB capacity of this channel is bounded by

and that this rate is universally achievable.
Upper and lower bounds on the convergence rates are given,
which show that, unfortunately, the transmission length re-
quired to obtain universal communication grows exponentially
with the block length of the competing system.
The modulo-additive channel is a relatively “easy” case be-

cause of two main reasons:
1) It is memoryless in the input, and thus the “password” issue
is avoided.

2) There is a single input prior, the uniform i.i.d. distribution,
which attains capacity for any noise sequence, since it max-
imizes the output entropy. Therefore, no adaptation of the
prior is needed.
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Fig. 5. Collapsed channel: a probabilistic equivalence to iterative mapping.

A. Bound on the IFB Capacity of the Modulo-Additive Channel

In this section, the following theorem is proven.
Theorem 1: The IFB-capacity of the modulo-additive

channel where are infinite sequences
denoting the channel input, output, and noise sequence, satisfies

(2)

where is the finite state compressibility of .
For the sake of completeness, let us shortly repeat the

definition of finite state compressibility. A finite state en-
coder with states is defined by a next state function

, and an output function
, where the output may

be a bit sequence of any length, including the empty sequence.
The encoder is said to be information lossless if for any , the
input can be uniquely decoded from the output sequence

, given the initial and final states. Let denote the
group of all finite state information lossless encoders with at
most states. Let the length of the output sequence of encoder
for an input sequence of length be denoted , then

the compression ratio of by is defined as

(3)

The compression ratio of the best information lossless finite
state encoder with at most states is denoted

(4)

and finally, the finite state compressibility of the infinite se-
quence is defined as

(5)

Note that the order of limits is critical for this definition, since if
the number of states is taken to infinity first, any sequence can
be compressed to 1 bit by having the state machine “remember”
and identify the particular sequence. The outer limit exists, since

is nonincreasing in and bounded from below.
Proof of Theorem 1: Define as the random vector of

length formed by selecting one vector from the set of vec-
tors , with uniform probability of for each. In other
words, the probability distribution of equals the empir-
ical distribution of the first blocks of length in . Similarly,

define the random variables and derived from the
sequences .
Suppose a given achieve rate and average error prob-

ability over blocks of size . This is equivalent to saying
they achieve error probability when operating on the stochastic
channel (see Fig. 5). Therefore, the stan-
dard converse of the channel capacity theorem implies that the

rate can be bounded by . Then, the
limit of is related to the finite state compressibility

. The later relation is a variation of a result by Lempel and
Ziv [6, Th. 3] on the convergence of the sliding-window empir-
ical entropy measured over increasing block lengths to the finite
state compressibility, whereas here the blockwise empirical en-
tropy is used instead. The full proof is given in Appendix A.
Note that the upper bound of Theorem 1 can sometimes be

strict, i.e., there are examples of sequences for which
, as shown in the following example. We do

not have an expression for the IFB capacity.
Example 4: Consider for the binary additive channel, the se-

quence which consists of blocks with ever increasing size.
The first half of each block is 0, and the second half block is
chosen randomly . With high probability, the fi-
nite state compressibility of the sequence is (which can be at-
tained, for example, by block-to-variable encoding, using 1 bit
to denote the sequence of zeros). However, the IFB capacity of
the channel is 0 with high probability, since for any encoder and
decoder with large block size, approximately half of the blocks
will be received in error. Therefore, there exist sequences for
which the inequality is strict.

B. Universally Attaining the IFB Capacity Over the
Modulo-Additive Channel

In this section, a universal system for the modulo-additive
channel with an unknown state sequence is presented. It is first
shown (see also [13, Sec. 10.5], [14]) that for a wide range of
sequential source encoders, there is a communication scheme
that asymptotically attains the rate , where

is the compression length of the -length sequence by
the source encoder, i.e., the number of bits used to encode the
sequence.
Let us first define a class of sequential source encoders, for

which Theorem 2 below applies. Only source encoders that have
the following structure are considered: the encoding algorithm
is unaware and is not a function of the sequence length . The
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encoder receives the sequence for compression letter by letter.
From time to time, the encoder emits parts of the compressed
sequence. After the last letter is entered into the source encoder,
it receives an indication that the sequence has ended and may
emit the final part of the compressed sequence.
For each sequence of any given length, define as the

unterminated coding length of the sequence, i.e., the length of
the output of the encoder after the input has been fed, but the
sequence has not been terminated, i.e., the encoder did not re-
ceive an indication that the sequence ended and is expecting ad-
ditional input. Define as the terminated coding
length, i.e., the length of the output after the encoder received
the termination indication. The sequence is uniquely decod-
able from the bits of the terminated code, but not nec-
essarily from the bits of the unterminated one. The dif-
ference is the information stored in the
encoder which has not been output yet. The class of source en-
coders is defined by the two assumptions as follows:
(A) The difference between the terminated and unterminated

lengths is bounded by an asymptotically negligible value:

This can be considered an embodiment of the limitation
to “sequential” encoders and precludes encoders that
process the entire sequence before producing outputs.

(B) The encoding length does not decrease when the sequence
is extended: . This is a technical re-
quirement intended to simplify the analysis.

Theorem 2: Given a sequential source coding scheme with
input symbols from alphabet that satisfies assumptions (A),
(B), and assigns a codeword length of to the sequence
, then for any there exists a sequence of adaptive-rate

encoders and decoders using common randomness and feed-
back, for increasing block lengths over the channel

, in which for any individual noise sequence
with probability at least , the message is correctly decoded
with rate of at least

(6)

where

(7)

(8)

and .
The communication scheme and the proof of Theorem 2

appear in Appendix B (see also the proof outline in Section III).
As shown in Appendix C, both assumptions are satisfied by
Lempel–Ziv algorithms LZ77 [15] and LZ78 [6]. Note the
similarity between the rate expression (7) and the capacity
of an ergodic stochastic modulo-additive channel, which is
also attained with a uniform prior,

, where
denote entropy rate and mutual information rate, respectively.

can be considered a generalized empirical measure of

the noise entropy rate. In this sense, Theorem 2 is a generaliza-
tion of Shayevitz and Feder’s result [1].
Substituting the compression length of Lempel and Ziv’s

LZ78 algorithm, the finite state compressibility is obtained.
This yields the following theorem.
Theorem 3: When the system of Theorem 2 is used in con-

junction with LZ78 source encoder, over the modulo additive
channel, then the following holds: for every infinite noise se-
quence and every there is large enough so that
when the system is operated over channel uses, then with
probability , the message is correctly decoded and the rate
is at least .
Corollary 3.1: The system defined above is IFB-universal.
Corollary 3.2: The system attains the Shannon capacity of

every modulo-additive channel with a stationary ergodic noise
sequence.
The proof of the theorem and its corollaries is given in

Appendix C, and its main point is to show that LZ78 satisfies
the assumptions of Theorem 2.
Theorems 2 and 3 are finite horizon, i.e., the system is de-

signed for a given transmission length , and because needs
to grow for the overhead to vanish, the asymptotic universality
is obtained by a series of systems rather than a single one, as is
standard in information theory. However, it is possible to de-
sign horizon-free systems in which the transmission length is
not limited and redundancy vanishes with time [13, Sec. 8.6].
The results of this section rely on LZ compression algorithm

and stress the relations between channel coding rates and com-
pression ratios, and between IFB capacity and finite state com-
pressibility. This relation is intuitively appealing and the re-
sulting system is relatively simple. On the other hand, the mod-
ified universal system presented in the next section yields better
bounds on the convergence of the overhead terms, which also
hold uniformly in .1

VI. REDUNDANCY OF THE UNIVERSAL SYSTEM

Let us now consider the redundancy of the universal system
and how fast it converges to zero as the block length increases,
under the context of the modulo-additive channel. The inter-
esting question is how large the transmission length size needs
to be, in order to successfully compete with an IFB system of
a given block size . Unfortunately, must grow at least as
fast as , approximately. Thus, even considering reference
systems of relatively small block sizes compared to standard
block codes, for instance , the competition becomes
infeasible.

A. Definition of Redundancy

Before giving a definition of the redundancy, some consider-
ations for the definition are provided. The finite state compress-
ibility of the infinite sequence , used in Theorems 1 and
3 is irrelevant for the analysis of convergence. This is because

1Notice that because Theorem 3 essentially indicates convergence to the IFB
capacity, the convergence cannot hold uniformly in , as the IFB capacity may
be obtained by competing systems of ever growing complexity, depending on
the noise sequence. In the next section, the IFB system and the universal system
are compared directly for finite without referring to the asymptotic value
of the IFB capacity, thereby making uniform convergence possible.
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is an asymptotical value, and the performance of the best
block encoder or FSM encoder on any finite block of symbols,
does not indicate anything about the final finite state compress-
ibility. In other words, there is no guarantee on the rate of con-
vergence of the in (5). Consider as example a sequence
which is incompressible up to time and then all zero to in-
finity, or vice versa. Note that incompressible sequences must
exist, by Kraft’s inequality. Therefore, instead of considering
the convergence of the rates obtained by the best IFB system
and the universal system to , the comparison is
between the rate obtained by the best IFB system of block size
, with a universal system, at time .
While the asymptotic results of Theorems 1 and 3 require the

error probability of both systems to tend to zero with , at a finite
block length, a certain nonzero error probability would exist. In
the two systems, error probabilities have different meanings: the
IFB system’s error probability is blockwise and the universal
system’s error probability is measured on the entire transmis-
sion. Therefore, for a fair comparison, and in order to remove
the dependence on the error probability from the results, let
us consider the following definition of an effective rate, for a
system operating over block of size with rate and error prob-
ability :

(9)

This definition is motivated by Fano’s inequality; see for ex-
ample (45). While the first factor is usually termed the good-put,
i.e., the number of error free bits, the second factor compensates
for the uncertainty in knowing whether there is an error or not.
For example, a system delivering bit per channel use
with error probability per block of size , i.e., trans-
mits no information, would have but .
Equivalently, may be interpreted as a bound on the normal-
ized mutual information between the input message and the de-
coded message, given the parameters , and . Notice that

. Regardless of the interpretation of , the results

below yield meaningful bounds on the actual rates by refer-
ring to .
Another issue is how to compare a universal system with

transmission length and an IFB system whose block length
does not divide . For a worst-case comparison, let us give

the IFB system the luxury of using the last block that possibly
extends beyond the th symbol, i.e., blocks overall,
while letting the noise sequence on these symbols take
the values which are best for the IFB system.
A definition of the minimax redundancy is given below.

Let define an IFB system with block length and rate
(Definition 2), which is iteratively mapped to the channel

, over symbols, where , and yield
average error probability (Definition 3). Similarly, on
the same channel over symbols, an adaptive system with
feedback and common randomness (Section IV-D), whose
design must not depend on , guarantees a rate of at least

with an error probability of at most . As in
Definition 6, includes both the probability of error and the
probability that the system’s rate falls below . While

is allowed to depend on the channel index , is required
to be fixed. Let and

. The rate and error probability
for each system are defined given the channel and the system.
The values related to the IFB system, , , and
depend implicitly on , while the values related
to the rate adaptive system, and depend implicitly on

.
The minimax redundancy for finite is defined as follows:

(10)

In other words, it is the minimal gap that can be
universally guaranteed by a single system over all channels.
Note that the definition allows the universal system to depend
on but this relaxation is not used by the universal system
achieving the bounds below. For the special case of the modulo
additive channel, the channel index is replaced by the noise
sequence .

B. Minimax Redundancy for the Modulo-Additive Channel
Class

The minimax redundancy of a universal system compared to
the IFB system over the modulo-additive channel is bounded
below. Let us begin with the main asymptotical result which
formalizes the notion that the minimum transmission length be-
haves asymptotically like .
Theorem 4: For a given and , let

be the minimum such that for the modulo additive channel,
, then

(11)

Theorem 4 is an immediate consequence of the explicit
bounds given in the remainder of this section. Theorem 5 below
specifies bounds on , and its Corollary 5.1 specifies
bounds on the minimum transmission length defined above.
Theorem 5: The minimax redundancy (10) for the channel

satisfies

(12)

where

(13)

and for :

(14)
The parameters are defined as follows:

(15)
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Fig. 6. Upper and lower bound on the redundancy of universal sys-
tems given by Theorem 5 for .

Fig. 7. Minimum transmission length required to obtain a minimax redun-
dancy , according to the bounds of Theorem 5 as function
of the IFB block size , for .

Furthermore, the universal system attaining the upper bound
does not depend on .

The theorem is proven in the next section. Note that both
bounds require to be small, and thus to be large, in order
to achieve a small redundancy. While the lower bound is linear
for , for large values, it increases significantly more
slowly, like . This is because of the inefficiency of the IFB
system used in the lower bound, at high rates. The value of
in the range is limited to , i.e., a rate offset of
half a symbol per block. The bound for the range is
useful, in showing that even if one is satisfied with a redun-
dancy of more than , must be kept small. Fig. 6 illus-
trates the bounds of Theorem 5 as function of the transmission
length , for a constant value of . The logarithmic and quan-
tized behavior of the lower bound for small values of can be
observed. Fig. 7 presents , i.e., the minimum required
to obtain , according to the bounds of The-
orem 5, as a function of . The gap between the upper and lower
bounds is significant: a little more than an order of magnitude.

However, their trend is similar. This observation is formalized
by Corollary 5.1 below, concerning the asymptotical behavior
of .
Corollary 5.1:

(16)

where and

(17)

For large and fixed ,

, and thus for large enough ,
and does not dominate the upper bound (16). For a small

value of both bounds of Corollary 5.1 behave approximately
like . Corollary 5.1 results from a technical simplification
of the bounds of Theorem 5 and is proven in Appendix D.
Most important is the lower bound on which indicates the
minimum rate at which must grow. Finally, Theorem 4 is an
immediate consequence of Corollary 5.1.
Note that the system attaining the upper bound of Theorem 5

yields a stronger type of universality than claimed in Theorem
3, because for each value of , the overheads are uniformly
bounded for any noise sequence , whereas previously, while
the overheads are guaranteed to tend to zero asymptotically with
, this convergence is not necessarily uniform with respect to .
Unlike other results in this paper where the IFB system is used

merely as a converse, in the proof for the lower bound , it
is required to devise a specific IFB system. Here, the simplicity
of the IFB system, which makes the other results intuitive and
simple to derive, complicates the proof. The collapsed channel
capacity, which upper bounds the IFB system rate, is usually not
achievable by a finite block encoder, and a specific channel has
to be devised in order for the IFB system to operate provably
better than any universal system. It seems that richer classes of
reference systems, e.g., systems using feedback as considered
in [11], may result in simpler and tighter lower bounds.

C. Proof of Theorem 5

1) Lower Bound (Reverse Part): In order to show that the
redundancy must be at least an example random
channel is constructed, in the following way. First, the encoder
is defined. Then, a way to generate noise sequences is

defined, such that the noise sequences belong to a subset of
all possible sequences , and it is possible to decode the
given code with zero error probability for any noise sequence
in the set. The IFB decoder is specified only after the noise
sequence has been chosen. The sequence is drawn in a
randomized way, thus creating a stochastic “test” channel. It
is shown that there exists a noise sequence for which the rate
of the universal system is bounded by the normalized mutual
information over the test channel. Asymptotically, as there
are certain constraints on the choice of the noise sequence,
this normalized mutual information tends to the rate of the
IFB encoder. However, at the beginning of the sequence, the
entropy of the sequence is a little higher than its long-term
average, and thus the mutual information is a little lower than
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Fig. 8. Reference encoder for the converse of Theorem 5.

Fig. 9. Entropy of the noise in the test channel over time, and the lower
bounds of (24), (80).

its asymptotic value, which equals the rate of the IFB encoder.
Thus, the rate of the universal system is bounded by a value
lower than the rate of the IFB system.
Let us first describe the IFB encoder. The encoder sends

symbols from the alphabet over channel uses, and therefore
has a rate

(18)

The encoding is simple (see Fig. 8): the first symbols
(prefix) are constant and the rest symbols (suffix) contain the
message. The decoder would be able to know the value of the
noise sequence over the prefix symbols, and knows a list of all
possible noise sequences. Assuming that there is no more than
one noise sequence with any given prefix, then zero error proba-
bility is possible: the decoder finds the noise sequence from the
prefix symbols, and cancels it on the suffix to find the message.
Next the test channel is defined. The set of allowed noise

sequences are simply those sequences for which each prefix
uniquely determines the respective

suffix . The random noise sequence is generated
as follows: at each block of symbols, the prefix of sym-
bols is chosen randomly, uniformly over all possible
prefixes, and independently of the past noise sequence. Then,
if the prefix had appeared before, the suffix equals the suffix of

the noise sequence that already appeared. Otherwise, the suffix
is chosen randomly, uniformly over all possible suffixes.2

The choice of the first sequence is uniform over all pos-
sible sequences, and therefore the entropy of the noise sequence
in the first block is maximal, . The choice of the noise
sequences narrows with time, and after a long while, all possible
prefixes would have been chosen, with one noise sequence per
prefix. In this case, the choice of the suffix is determined by the
prefix, and the entropy per -block is . This is the
minimum entropy per block attained. The behavior of the en-
tropy in this channel is shown in Fig. 9.
Now, because ,

(19)

Therefore,

(20)

where denotes the value defined in (19) for the specific
reference system described.
The universal system guarantees error probability for any
. By definition, for any , .
Therefore, if is drawn randomly in , then the universal
system yields a rate of at least , with error probability at most
over the test channel, and can be converted to a fixed-rate

systemwith feedbackwith rate over the same channel. Using
Fano’s inequality, which holds also in the case of feedback3

(21)
and therefore for any universal system :

(22)

which yields the bound

(23)

Asymptotically, , and thus the

bound above tends to zero. The main point of the proof is to
bound the convergence rate of .
It may appear surprising, that while it will be shown that

the mutual information over the channel is slightly lower than

2An alternative way of generating the noise sequence, which yields the max-
imum entropy, is by uniform drawing over the set of all possible -length se-
quences that satisfy the unique prefix condition. However this complicates the
bound.
3See (45) in the proof of Theorem 1, and (37).
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, the IFB system transmits rate with zero error over
this channel. This is explained by the fact that the decoder is
designed knowing the specific noise sequence, and therefore its
effective rate is not limited by the mutual information.
The next step is to bound . This rather technical

derivation is deferred to Appendix E, where the following
lemma is proven.
Lemma 1: For the distribution of of the test channel de-

fined above, the entropy satisfies

(24)

where

(25)

are the initial slope of the bound for small , and the asymptot-
ical entropy rate per symbol, respectively.
Substituting the above in (23) yields

(26)

The bound is true for every . Let us find a
value of that approximately maximizes the bound for given

. Starting from and decreasing , each decrease of 1
doubles the first term in the RHS of (26), as long as
, and only linearly decreases the second term. Therefore, it is
beneficial to decrease as long as , and no more
than one additional step. For simplicity, let us always take the
additional step and determine as the maximum

so that , or if no such exists, i.e.,

(27)

If , then , and .
In this case (26) yields

(28)

Otherwise, , and (26) yields

(29)

(28), (29) are represented in a compact form in (13) above. This
proves the lower bound of Theorem 5.

Upper Bound (Direct Part): The purpose is to show the exis-
tence of a universal system that attains a small redundancy with
respect to the reference system, i.e., referring to (10), it is de-
sired to show that there exists a universal system such that

(30)

The desired result is similar to the one of Theorem 3, however
to reach the desired overheads, a slightly different design of the
universal system, and a more careful analysis of the overheads
is required.
Following the same logic as the proof of Theorems 1, 3, the

difference between the good-put of the two systems is bounded
by the following steps:
(a) The relation between and the ideal target of the

rate adaptive system (i.e., the overhead term of Theorem
2).

(b) The relation between and the collapsed channel
capacity, or equivalently the collapsed noise entropy

.
(c) The relation between and obtained using

Fano’s inequality (as in the proof of Theorem 1).
Considering the scheme that was described for the achiev-

ability result of Theorems 2 and 3, the largest overhead is due
to step (b). This large overhead is in some sense unavoidable, as
the converse shows, however it is especially large due to the use
of LZ78 algorithm which has a slow convergence
rate. Specifically, using [6, Th. 1.2], this term, i.e., the bound

on behaves like , i.e., in

order for this term to be small, it is required that ,
and any small improvement in the overhead requires an ever
growing increase in : improving the overhead by a factor of 2
requires squaring .
To obtain a tighter bound, a more general result from

[13] can be applied. Theorem 8.2 there shows that for
every causal probability distribution , i.e., satis-
fying for all : , the rate function

is adaptively achievable with over-

head of , where is the

minimum nonzero value of .4

Substitute as the uniform distribution
having . Take , for some proba-
bility distribution . This choice satisfies the causality con-
dition and yields

(31)

with .
Let us begin by analyzing the relation between and

in step (a) above. While the convergence of requires

to decay subexponentially with , the choice of will lead
to a reduction of in rate. For simplicity,
let us choose as this factor is insignificant. In other

4Substituting in the parameters of the theorem.
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words, there exists a system with which with proba-
bility transmits a rate without error over the
channel. Therefore,

(32)

where in the last step, for simplification of the bound, it was as-
sumed that —otherwise, is large. Equation (32)
yields the desired relation for step (a) above. Next, the relation
between and the collapsed noise sequence entropy in step
(b) is considered.
If one is interested in competing with an IFB system with

block length , it would make sense to treat each symbols
of the noise sequence as a single supersymbol, and take as
the universal distribution defined by Krichevsky and Trofimov
[12] over these supersymbols. This distribution is universal in
the sense that up to a small overhead, ,
i.e., the probability matches the empirical entropy of the se-
quence, which in the current case is . Furthermore,
this holds with a redundancy close to the minimum possible.
It is possible to construct a universal distribution that
compares well with all distributions over the symbols which
are i.i.d. over -length blocks, by a weighted average of
Krichevsky–Trofimov distributions.
Let denote a distribution over the -letter , where
is not assumed to divide . This defines also a distribution

on the partial sequence of length by taking the marginal
. The distribution over length vectors,

associated with is defined as the i.i.d. extension of , where
the marginal distribution is used for the remainder that does not
divide by . This -length distribution will be denoted by the
same symbol

(33)

Then, by weighting Krichevsky–Trofimov distributions it is
possible to obtain the following result.
Lemma 2: There exists a distribution , such

that for all for which :

(34)

where

(35)

The detailed derivation and proof appears in Appendix F. The
next stage is to relate to . Let

be the th block of . Recall that is the number of
-blocks that cover the symbols, and is a random variable
generated by uniform selection out of . Let

be the distribution of which is the empirical distribution of
:

(36)

where (a) is because the empirical distribution maximizes the
joint distribution of the vector; the expression following (a),
where themaximization is over all -letter distributions , could
be considered an alternative definition of (see [13, Sec.
9.14]). Transition (b) holds because extending the vector re-
duces its probability; see also the definition of (33).
Finally, in step (c), let us use Fano’s inequality (see (45) in

the proof of Theorem 1):

(37)
Combining the above yields

(38)

Since this holds for any noise sequence and any pair ,

(39)
This proves the upper bound of Theorem 5.

VII. DISCUSSION AND EXTENSIONS

The model presented in this paper supplies the first definition
of a “universal communication system,” and the results indicate
that such universal communication with feedback is possible in
the nontrivial example of the modulo additive channel with an
individual state sequence.
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A. Alternative Definitions of Universality

The IFB comparison class was chosen as perhaps the simplest
and most intuitive comparison class for universal communica-
tion. However, it has several drawbacks:
1) The reference system is limited in terms of complexity,
feedback, etc.

2) On the other hand, universality is only achieved at ultra-
high values of the transmission length . Similar issues
exist with Lempel–Ziv universal source coding.

3) The definition motivates learning -periodic structures in
the channel, which is counterintuitive. This may be solved
e.g., by starting the reference system at an arbitrary time
rather than at time 1, or by using structures that are not
periodic such as FSMs [11].

4) While the IFB capacity is limited by the “collapsed channel
capacity,” it usually falls short of it. Furthermore, had the
channel been a stochastic memoryless one, a rather large
block size would be needed for the IFB system in order
to yield a small error probability. A possible solution is to
define the collapsed channel capacity itself as a target rate,
but it is not clear how this should be defined for channels
with memory.

1) Possible Enhancements of the IFB Class: Since the ref-
erence system enjoys the advantage of being designed for the
specific noise sequence, this advantage is compensated by im-
posing some restrictions on the reference system, which are not
imposed on the universal system. This is similar to what is done
in universal source coding and universal prediction, when the
comparison class is too rich. The definition of limits the
reference system in several factors, where the universal system
is not restricted. Namely its complexity, the use of feedback,
common randomness, and rate adaptivity. Relaxing any of these
factors, may generate a higher value of the target rate as an al-
ternative to , which may still be universally attainable.
Some potential variations are given below:
(a) Randomness: allowing the reference system the use of

common randomness.
(b) Rate adaptivity: allowing rate adaptivity in various levels.

Error detection and automatic repeat request (ARQ) can
be considered a very basic level of adaptivity.

(c) Complexity: definition of the encoder/decoder as FSMs
rather than block encoders/decoders.

(d) Feedback: allowing the use of (a possibly limited amount
of) feedback for the reference system.

The first two extensions (a), (b) are trivial, and were not
pursued here in order to simplify the presentation. Misra and
Weissman presented in [11] a class of FSM encoders and de-
coders with feedback, termed the FS class, that includes all
the enhancements above, and had shown that for the modulo-
additive channel, the maximum rate achieved by the reference
class is at most , so the current result on
universality would hold also with respect to this enhanced class.
Furthermore, they show that, unlike the IFB class (Section IV-E),
the FS class achieves the rate when the complexity is allowed
to grow. Notwithstanding these results, the IFB class is still of
interest due to its simplicity, which allows simple analysis and
consideration of more complex channel models [9].

Below, these extensions are briefly discussed. Although
Misra and Weissman already extended the results in the context
of the modulo-additive channel, it is interesting to consider
these extensions for more general channel models.
Common randomness: Allowing the reference system the use

of common randomness does not change the results, as long as
the common randomness is independent of the noise sequence
and/or the block number. This is because the IFB capacity would
still be upper bounded by the collapsed channel capacity. This
holds also for channels with fading memory [9], where the col-
lapsed channel capacity is used as a bound for the IFB rate.
Rate adaptivity: The IFB system may be allowed to choose

the transmission rate adaptively at the decoder. A simple form
of rate adaptivity is error detection, i.e., the decoder is allowed
to choose between rate and rate 0. In the later case, decoding
errors are ignored. On the other hand, the IFB rate is defined
in an effective way, considering how many blocks were actu-
ally decoded. Under suitable definitions, the effective rate of
the IFB system would still be bounded by the collapsed channel
capacity, so the results easily extend. Note that allowing error
detection effectively models a block coding system using au-
tomatic repeat request (ARQ). When rate adaptation is con-
sidered, for a fair comparison, the decision on the rate must
be made at the decoder based on the received sequence alone,
rather than be given to the decoder.
Complexity: In order to achieve competitively universal com-

munication, it is essential that both the reference encoder and
the decoder be limited in some way, assuming they are designed
knowing the channel. Consider, for example, the modulo addi-
tive channel. If the encoder is not limited, then it can transmit
data at the maximum rate bits/channel use, by uncoded
transmission and subtraction of the noise sequence at the en-
coder. In this case, the decoder does nothing essentially, so re-
strictions on the decoder will not be helpful. Conversely, if the
decoder is not limited, the encoder can transmit the message un-
coded and the noise sequence can be canceled at the decoder, so
limitations on the encoder would not help. As mentioned, an
extension to FSMs with feedback (FS-class) has already been
shown [11]. An interesting issue for further study is the univer-
sality with respect to the FS-class in general channel models.
Feedback: Several types of feedback may be considered:
1) Feedback inside the block, i.e., where the state is reset from
block to block. Because the collapsed channel is a channel
with memory, feedback can increase its capacity. The in-
crease in capacity is obtained by changing the input distri-
bution (prior) in response to feedback, yielding informa-
tion on the channel state. Hence, in order to complete in
this case, the universal system would also need to adapt its
input distribution per symbol based on feedback. Hence,
the universal systems presented here and in [9] are not
suitable for this setting. However, for the modulo-additive
channel, feedback does not increase capacity, because the
best input distribution is uniform regardless of any knowl-
edge on channel state (in other words, as easy to see, the
bound based on Fano’s inequality (45) would hold regard-
less of feedback), and in this particular case, the results
do extend to the case of feedback inside the block (see
also [11]).
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2) Feedback between blocks, i.e., encoder of block receives
a message from decoder of block . This kind of feed-
back effectively increases the block size of the IFB system,
as it allows it to keep track of the block index to some
extent by passing it back and forth between the encoder
and the decoder, through the channel in one way and the
feedback link in the other way. Of course, this cannot be
continued when the number of bits required to represent
the block index is larger than . In the modulo-ad-
ditive channel, knowledge of the block index yields the
maximum capacity of . It is interesting to note that,
while such feedback seems to considerably strengthen the
IFB system, Misra and Weissman [11] showed that the rate
of the FS-class is limited in spite of feedback. This is be-
cause the restriction is on the number of states rather than
on the block length.

3) It is possible to allow the reference system the use of
asymptotically zero-rate feedback, which does not con-
siderably increase the effective block length and cannot
considerably increase the collapsed channel capacity, and
is comparable with the amount of feedback used by the
universal system.

2) An Alternative Comparison Class: As mentioned, a rel-
atively short block size, limits the IFB class from attaining the
collapsed channel capacity. This gap is not utilized in the current
bounds. The collapsed channel capacity bound would still hold,
if the reference encoder and decoder were allowed to encode
multiple blocks together, but treat each block in the same way.
One option to define this class is to limit the encoder to a

random encoder over the entire transmission length , with an
i.i.d. prior of choice (alternatively, i.i.d. in blocks) and limit the
decoder to use a memoryless decoding metric (or more gener-
ally, alpha decoding, i.e., type-based decoding). Another similar
way is to let the encoder and decoder be general but randomly
permute the inputs and outputs of the channel. As before, the ref-
erence encoder and decoder are limited, but are designed based
on full channel knowledge. For the modulo-additive channel,
it is easy to see that in both cases, the reference rate would be
limited to . It is more interesting to discuss
these classes in the case of general channels—see [9]. Note that
although these reference systems would fail for the password
channel defined in Example 3, it is possible to devise an alter-
native example, showing that universal communication with re-
spect to these classes over general channels is not possible (see
Appendix G).

B. Other Comments

Theorem 2, connecting the transmission rate to the compres-
sion rate of the noise sequence is reminiscent of Ahlswede’s
channel coding scheme with feedback [16]. This scheme sends
information by iteratively compressing the receiver’s uncer-
tainty with regard to the transmitted message. Indeed, Ooi [17]
used this scheme in order to achieve adaptive communication
over compound channels, including compound finite state
channels. Ooi assumes a compound channel, i.e., probabilistic
with unknown parameters, and varies the rate by changing the
transmission length, while here an individual noise sequence is
considered and the rate is varied by changing the number of bits

transmitted. Using a variable block length is a simpler, particular
case, that can be obtained by transmitting a single block, in the
scheme presented here. Adapting Ooi’s scheme to the individual
noise sequence channel seems complicated while using random
coding yields a simple proof for the current result.
The result of Theorem 2 is also closely related to Ziv’s result

[18] regarding universal decoding over compound finite state
channels. If Theorem 2 is particularized to the nonadaptive case,
then it can be proven and generalized by the tools used there. The
decoder in Ziv’s paper uses joint Lempel–Ziv parsing and yields
a decoding metric which generalizes in a sense the metric used
here, for channels which are not necessarily memoryless. The-
orem2 and particularly Lemma1 there, relate the size of the error
sets defined there, for the maximum likelihood decoder
designed for the finite state channel, and the universal decoder.
This relation indicates the rate that can be achieved with a given
error probability is asymptotically the same. Furthermore, the
only assumption used about the reference maximum likelihood
decoder is that it uses a finite state metric (see the proof of
Lemma 1 there), and thus the IFB decoder falls into this class.
In a previous paper [5] a different framework, termed “indi-

vidual channels” was considered, in which no relation between
the input and output of the channel is assumed a priori, and
the communication rate is given as a function of the input and
output sequences (see also [13, Part 1]). As an example, the
empirical mutual information is shown to be achiev-
able. The current achievability result (Theorem 2) can be stated
in these terms by saying that the rate function

is asymptotically adaptively achievable
(i.e., by an adaptive rate system). Note that there is no need to
assume that the channel is truly modulo-additive to show this.
It is also possible to show [13, Th. 10.2] that all achievable rate
functions that depend only on the noise sequence

, are asymptotically of this form, i.e., given a system
attaining the rate for each
and where the channel input is uniformly distributed (see
the definitions therein), there exists a source encoding scheme
with encoding lengths such that asymptotically

.
In previous works [1], [4], rates which reflect the average

channel behavior such as were termed “empirical
capacity” mainly based on the similarity to the capacity ex-
pressions for memoryless channels. The term is not completely
justified, since clearly this is not the maximum communication
rate. The value seems to be a better candidate to describe
the modulo-additive channel’s “empirical capacity,” although as
discussed above, other interesting definitions can be suggested.
Note that there is no fixed order between and the rate

, where is the empirical frequency of “1”-s in the
sequence (defined in [1]). For example for ,
the relation is , while in Example 4
the order is inverse . On
the other hand, the relation always holds,5

so the rates achieved by the scheme described here are asymp-
totically better than the previously achieved rates [1].

5This can be shown by block to variable encoding to rate where is
the empirical probability of 1-s in the block, and the convexity of



LOMNITZ AND FEDER: UNIVERSAL COMMUNICATION—PART I: MODULO ADDITIVE CHANNELS 5503

The current results assume the noise sequence is fixed and un-
known, and do not extend to the case where the noise sequence
is determined by an adversary (i.e., is a function of ),
and the reference class is aware of the adversary strategy. To
see this, it is easy to design an adversary that identifies the code-
book used by the reference encoder, and locks the channel (by
choosing the noise sequence randomly) once a different channel
input appears.

VIII. CONCLUSION

This paper considered target rates for universal systems with
feedback and focused on the modulo additive channel. The
notion of the iterated finite block capacity, denoted , was
defined for a vector channel, as the highest rate achievable
by encoders and decoders that may be designed for the par-
ticular relation that exists between the input and output, yet
are constrained to be of finite block length and use the same
scheme over each block. The IFB capacity was used
as a target communication rate to be achieved without any
prior knowledge of the channel, using feedback. It was shown
that cannot be achieved universally for completely gen-
eral input–output relations, however for the modulo-additive
channel with an individual noise sequence, it can be achieved
universally without knowing the noise sequence. Specifically,
it was shown that , where is the finite
state compressibility of the noise sequence, and a universal
system with feedback attaining a rate of at least
was presented. This result is relatively simple due to the prop-
erties of the modulo additive channel. In a follow-up paper [9]
the result is extended to more general channels.

APPENDIX

A) Proof of Theorem 1: Suppose a given achieve rate
and average error probability over blocks of size . Let us

adopt the definitions of , , and from Section V-A,
and likewise define and to be random variables gener-
ated by selecting the block index uniformly over and
taking the respective encoded/decoded (resp.) messages, i.e.,

, , where . See Fig. 5.
Then,

(40)

The rate is now bounded by the entropy of . By Fano’s
inequality

(41)

Therefore, by the information processing inequality

(42)

On the other hand,

(43)

Combining the two

(44)

Therefore,

(45)

If is an achievable rate then by Definition 4, for any
there exist such that (45) holds for this and large
enough. Therefore, taking on both sides yields

(46)
Next, let us relate to the finite state compressibility

(see (3)–(5) in Section V-A). There exists an FSM with
states that compresses the sequence to at most

bits. This state machine implements a block
to variable encoder tuned to the empirical distribution and is
structured as follows: its state space includes a counter from 1
to which counts the index inside the block, and a memory of

input characters. When the counter reaches the machine
outputs an encoded string, and the counter returns to 1. In the
other counter states, the machine emits the empty string. The en-
coded string is generated by a simple block to variable encoder
optimized to compress the random variable to its minimum
average length (e.g., a Huffman encoder, although a simple en-
coder using lengths is sufficient for this pur-
pose), and therefore its average encoded length for is at
most [19, Sec. 5.4]. The encoding length is there-
fore

(47)

Therefore, for

(48)
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The condition may be relaxed and the inequality may
be applied to any finite , taking (since if the last
block is unfinished it will not contribute to the length, and the
normalization by will only decrease the LHS). Now,

(49)

and

(50)

Combining the above with (46) yields

(51)

Since the obtaining the requirements of Definition 4 may
be small, the factor on the RHS makes the bound loose. To
tighten the bound the following argument is used: choose a
number . If there exist with block size and average
error probability over large enough which divides by , then
by treating at each consecutive blocks as a new block (and
forming the encoder and decoder with block size by using
times the original encoder and decoder), then by the union

bound if denote the error probabilities over the blocks
, the error probabilities of the aggregate encoder and

decoder will satisfy , and therefore the av-

erage error probability will be
. The conclusion is that if the requirements of Definition 4 are

met for a certain , they are also met for . Therefore,

(52)

Note that Definition 4 requires the rate to be achievable for
any , and therefore it is possible to take . By

choosing for each , , denoting as any that satisfies
(52) for this , and taking the limit yields

(53)

which by Definition 5 proves the theorem.

B) Proof of Theorem 2: In this section, it is shown that
the rate can be attained for a wide class of
source encoders. Notice that this result is derived for a more
general case in [13, Sec. 10.5]. A rough proof outline appears in
Section III.

The Adaptive Communication Scheme: The scheme ap-
plies repeated “rateless” transmissions: fix a value of the
number of information bits per block. Using the common
randomness, generate a random codebook of words
chosen independently and distributed uniformly over
which is known at the encoder and decoder. In each rateless
block , the encoder sends bits to the decoder,
by sending the respective symbols from codeword indexed by
those bits. Note that at each block different symbols from the
codebook are sent. The block terminates when a termination
condition is satisfied at the decoder. Then, the decoder stores
the decoded bits and indicates this to the encoder, through the
feedback link (a 0–1 feedback is sufficient), and a new block,
conveying new bits, begins. The last block is potentially not
decoded, if the termination condition is not satisfied at the last
symbol.
The decoding and termination rule are specified next. Sup-

pose that the current symbol number is and the block number
is . The last symbol of the previous block (number ) was
sent at symbol ( if is the first block). Let denote
the transmit sequence that follows from the previous decisions
made by the decoder (i.e., is composed of the symbols from
the codebook matching the decoded bits at each previously de-
coded block), and let denote the transmitted symbols
matching codeword . defined
below is the decoder’s hypothesis on the noise sequence :

(54)

Take to be the length prefix of (which is
independent of ). The decoder calculates the following con-
dition for all :

(55)

It announces the end of the block and decodes the bits matching
codeword index if the termination condition is satisfied with
respect to codeword (where ties can be broken arbitrarily),
and does not terminate the block if the condition fails for all
codewords.
Regarding the termination condition (55) note that the RHS

starts from a negative value and increases linearly at a rate of
bits per symbol, while the LHS starts from a nonnegative

value, but for a compressible noise sequence, it is expected to
increase at a rate slower than bits per symbol, therefore
if the noise sequence is compressible and the block length is
large enough, the condition will eventually be met.

Proof of the Theorem: In order to prove Theorem 2 it is
shown that the scheme above achieves an error probability of at
most , and if an error does not occur, the number of bits decoded
(determined by the number of blocks sent), approaches
for a suitable choice of .
Let us begin by bounding the error probability. First let us

calculate the probability that the decoder decides in favor of
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an incorrect codeword at any given symbol (where again
denotes the end of the previous block), by using a property of
the sequential encoder. Consider a sequence of length which
is fed into the sequential source encoder in two stages: first,
the first symbols are fed (and the encoder has emitted
bits), and then the rest symbols are fed and the encoding is
terminated. Between the th and the th symbol, the encoder has
emitted additional bits, which can be used to
uniquely decode when is given (since the entire encoded
stream can be generated from the first bits plus these
additional bits, and used to decode ). Therefore, the number
of sequences for which (where

) is upper bounded by (since they are in effect
encoded by bits).
Since the codewords are independent, given the transmitted

symbols, the other codewords in the codebook over the period
of the current block are independent sequences uniformly drawn
from . Therefore, the hypothesized tail of the sequence

for any fixed is also uniformly
distributed (over the common randomness). Since there are at
most sequences that satisfy , the
probability that a particular sequence will satisfy the condition
is at most

(56)

and therefore by the union bound, the probability that any of the
competing sequences will satisfy the condition is at most

(57)

Substituting the value of given by the termination
condition

, the error probability per
symbol is at most , therefore by the union
bound over symbols, the probability of any error occurring
during the decoding process is at most .
Next, let us analyze the rate achieved by the scheme. The

analysis assumes no decoding errors occur. Denote the number
of decoded blocks by (so potentially there are blocks,
if the last block is not decoded). The proof is based on bounding
the value of based on the number of blocks. denotes the
true noise sequence.
Suppose a block was decoded in symbol and the previous

block ended at symbol . By choosing (or ) large enough
it can be guaranteed that decoding never happens at the first
symbol of any block, therefore . By the assumption
that no decoding errors occurred the sequence is identical to
. In symbol the decoding condition was not met for any

codeword, including the correct one, for which .
Therefore it holds, with respect to the true noise sequence, that

(58)

This is an inverted version of condition (55). Note that the floor
operator is not needed here since the LHS is an integer.

Using monotonicity of and the bounded difference
the following telescopic series is lower bounded:

(59)

where . By the same argument,
this bound is true also for the undecoded block (with ).
Taking ( ) to be the symbol in which block
ended, and adding and the following bound
is obtained by summing (59) over blocks (including the
undecoded one, which is taken as a block of length 0 if the last
block is decoded)

(60)

The actual rate achieved by the scheme is

(61)

Extracting from (60) and calculating yields

(62)

where (a) is because , and (b)
is because . To choose the value of that
approximately minimizes the overhead term in the lower bound,
the following lemma is used.

Lemma 3: For with

(63)
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Proof: It is easy to see by derivation that the minimizer
over of is . Choosing yields

and since :

(64)

Applying the lemma to the choice of in (62) yields

(65)

where by assumption (A) of Theorem 2, .

C) Proof of Theorem 3: To prove Theorem 3, it is first
shown that LZ77 [15] and LZ78 [6] fulfil the requirements of
Theorem 2. Both algorithms operate by creating a dictionary
from previous symbols in the string, compressing a new sub-
string to a tuple containing its location in the dictionary, plus,
possibly one additional symbol. In LZ77 the dictionary consists
of all substrings that begin in a window of specified length be-
fore the first symbol that was not encoded yet. LZ78 parses the
string into phrases. Each phrase is a substring which is not a
prefix of any previous phrase, but can be generated from con-
catenating a previous phrase with one additional symbol. The
dictionary contains all phrases.
It is easy to make sure that is monotonous (Assumption

(B) of Theorem 2). This depends on the way the last phrase
in the string is treated, which does not affect the asymptotical
performance. Recall that in LZ compression, in which the new
data bits are gathered, and encoded to produce a tuple, once they
comprise a phrase that had not appeared before. The last phrase
may be an incomplete substring of a string in the dictionary, and
therefore does not naturally terminate by this rule. For example,
in the following parsed sequence , the last
phrase 110 had appeared before and therefore would not natu-
rally produce a tuple. There are various ways to treat this last
phrase. If, for example, the last phrase is sent without coding,
then will not be monotonous, since adding more symbols
to that will terminate the phrase and may result in a shorter
compression. For example, the addition of either 0 or 1 to the
sequence above, would generate a phrase that had not appeared
before. A simple treatment is to encode the last phrase simi-
larly to other phrases, i.e., refer to one of the phrases in the dic-
tionary which is a prefix of the remaining substring (in the ex-
ample, refer to the previous appearance of 110), and always give
the length of the last substring, or equivalently the length of the
block, at the end. This way the compression length associated
with the last substring does not decrease when the substring is
extended.
In order to bound (Assumption (A) of The-

orem 2), it is required to bound the tuple which encodes the
last phrase. In LZ78 this tuple carries an index to a previous
phrase, plus a new symbol. The number of previous phrases is

bounded by (a coarse bound, but sufficient for the current pur-
pose), and therefore [19, Lemma 13.5.1] its encoding will be of
length and the length of the tuple will be

(where is a constant accounting also for
rounding, encoding of the additional symbol, etc.). Therefore,
if the encoder ends the block with an indication of its length
then . In
LZ77 this tuple carries a pointer to the window and a length (i.e.,
two numbers bounded to ). Therefore, after adding
an indication of the length at the termination,

. In both cases
and the requirement is satisfied. Therefore, the com-

pression length may be substituted in Theorem 2.
The rest of the proof deals with analyzing and bounding the

overheads related to the achievability of , and the differ-
ence between the LZ compression length and the finite state
compressibility, in order to show that they tend to 0 with .
Recall the definitions of finite state compressibility (3)–(5) in
Section V-A.
A result by Lempel and Ziv [6, Th. 2 (item ii)] shows that for

every finite

(66)

where . By Theorem 2 for any , the system

attains the rate

(67)

Choose a small . Since , it is possible to
find large enough so that for any , . By the
definition ,
it is possible to find large enough such that

. For this value of , because
, it is possible to find large enough so

that for any , . For the same , find
so that .
Writing (67) for these yields

(68)

Therefore, the requirements of Theorem 3 are satisfied by sub-
stituting .

Proof of Corollary 3.1: The corollary follows directly from
the definition, by application of Theorems 3 and 1.

Proof of Corollary 3.2: Suppose the sequence is drawn
by a stationary ergodic source. The mutual information rate is

, and to
obtain an equality, the capacity is obtained by a uniform i.i.d.
prior, which maximizes . Hence, the capacity is

. It was shown [6, Th. 4] that the finite state
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compressibility equals the entropy rate of the source, with prob-
ability one. The proposed communication systemwould asymp-
totically attain the communication rate , without prior knowl-
edge of the noise distribution.

D) Proof of Corollary 5.1: The target is to find the required
such that , based on the bounds of Theorem

5. The lower bound of Theorem 5 on yields a lower bound
on (converse) and the upper bound on yields an upper
bound on (achievability).

Converse: According to the lower bound (13), either
, or , which combined

with yields, after rearrangement,
, i.e., . This condition on

is always less strict than the former, and because at least one
of the conditions should hold, the second always holds. Trans-
lating to a condition on yields

(69)

Achievability: Let us find an for which the upper bound is
at most . Define . Assuming ,
then is monotonically increasing, , and

. Thus,

(70)

The same assumption leads to and thus

(71)

and

(72)

where (a) is because , so
. Combining (70), (71), (72) with

(14) yields

(73)

Thus, to guarantee is enough if and

(74)

i.e., it is required that

(75)

and equivalently

(76)

E) Proof of Lemma 1: In this section, Lemma 1 from
Section VI-C, regarding the entropy of the noise distribution
of the test channel defined there, is proven. See Section VI-C.1
for the definition of the test channel.
The entropy of each prefix, conditioned on the past is

, where is the
asymptotical entropy rate per symbol. The entropy of the suffix,
given the past, changes over time. When choosing the th
noise sequence (of length ), at most different prefixes
already appeared. Therefore, the probability that the th prefix
equals one of the previous ones is at most . Let us define

and consider first the case . In this case, the
entropy of the suffix, given all previous symbols, is zero with
probability at most , and with probability at least

, and is therefore at least .

Formally, define as the

th prefix and suffix, and

as a flag indicating whether appeared before. Then, the
entropy of the suffix given the past is

(77)

where (a) is because is a function of . Therefore,

(78)

For simply bound

(79)

Notice that determines the asymptotical entropy rate of the
sequence, and matches the bound on the universal system and
the rate of the IFB system.
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For :

(80)

The above implies that the entropy, at times , is
bounded above the straight line with slope

(81)

See Fig. 9. For ,

(82)

and in general

(83)

Consider now for that does not, in general, divide by
. Inside the block of length , the per-symbol conditional en-
tropy is during the prefix, and then in-
creases at a smaller or equal rate during the suffix. Therefore,
the entropy is concave during the block (see Fig. 9). Be-
cause the entropy at block edges is bounded above straight lines
(83), the entropy inside the block is bounded by these lines as
well, i.e., (83) can be extended to

(84)

which proves the lemma.
F) Proof of Lemma 2: For the sake of brevity, as long as

a single value of is discussed, let denote the super-
alphabet of length and denote its size. Let
define a distribution over . The Dirichlet density
over the set of distributions is defined as

(85)

where

(86)

and for a -length vector , let be
the probability given to by the i.i.d. distribution . Let

(87)

and define the weighted average of all probabilities given to
by i.i.d. distributions , where the integral is over the unit
simplex
. By well-known results of Shtarkov, which are detailed in

Lemma 1 in Xie and Barron’s paper [20], it holds that

(88)

Note that the terms that do not scale with are usually ignored,
because is considered fixed, however here they matter, be-
cause the question would be how fast (equivalently ) may
grow with . Thus, for any :

(89)

The same inequality would hold when marginalizing the above
to any parts of (i.e., summing over the remaining elements of
). Using this observation, let us set . Then substi-
tuting in (87), yields

(90)

and summing both sizes with respect to , yields

(91)

Furthermore, by (89)

(92)

Let us now bound . Following Xie and Barron’s [20, Re-
mark 7], using and Stirling’s approximation

yields from (86)

(93)
and from (88)

(94)

Note that is always positive, even when . When
, the second factor dominates, and the normalized loss

does not tend to zero. Therefore, it is not useful to consider
in this region. Assuming (note that since this also
implies ), and substituting , ,
yields

(95)
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Now let

(96)

then from (92)

(97)

and thus

(98)

The factor can be coarsely bounded by (95):

(99)

with . Combining this bound with (98) yields the
result of the lemma.

G) Password Channel for i.i.d. Distributions: As noted
in Sections IV-E and VII-A, even limiting the reference class
it to i.i.d. input distributions would not solve the “password”
problem, and therefore universality is not possible even with
respect to such encoders, for general channels. To see this, con-
sider the following example, where the channel identifies the
input distribution of the encoder. This is a variation of the “pass-
word channel” (Example 3).

Example 5: The channel class is a class of binary
input–output channels, parameterized by a single a parameter

. For each value of , the channel is defined as follows:
1) At each symbol in time, if the normalized number of
ones at the input is not within a range of thresholds

, then from this time on, the channel “locks”
and the output is . Otherwise, the channel is
noise free and the output equals the input .

2) The threshold sequences are computed such
that, if the input is i.i.d. , then with high probability

, the thresholds will not be crossed during any of the
symbols (i.e., the channel will not lock). Clearly, as in-

creases, the thresholds will converge to .
Thus, the channel “identifies” a certain input probability. No-

tice that all the channels are causal and deterministic, and they
allow communication at a rate of approximately . The
“memoryless” reference schemes mentioned in Section VII-A
can communicate over this channel using a input dis-
tribution and approach this rate, with a small error probability.
But a universal communication over the class is impossible.
Until the channel locks, nothing can be inferred about from
the channel output. Therefore, the transmit distribution of the
universal scheme until the lock time is independent of . On
the other hand, any given input sequence, will “lock” some of

the channels in the class. Therefore, any operation of the uni-
versal system is bound to cause some of the channels to lock,
and achieve an asymptotically zero rate.
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